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1. Introduction

The resea-rch to be reported on here was completed recently by Hale,

LaSalle, and Sleirod and. a complete paper [l] on the subject is to appear.

The research developed in the following manner. Billotti under the direc-

tion of LaSalle completed a, study [2] in 1969 of dissipative retardedl

functional differential equations, and he and LaSal.Le then developed these

results in a more general fashion [3] which, however, 'assumed the strong

"smoothing" of initial data as occurs for retarded functional differential

equations. Discussions of this work with Hale and Slerarod interested -them

in further generalizations. Slemrod saw how to do this for parabolic and

hyperbolic partial differential equations and Hale for a wide class of

functional differential equations of neutral type. It was then decided to

unite the disparate points of view by identifying the general hypothesis

wThich lead to the principal results, and the culmination of this collabora-

tive effort is 'the subject of this report.

2. Processes

To present the background and the results succintly it is convenient
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Co begin with the concept of a. process (think of this as a "generalized

nonautonomous dynamical system").

Let R = (- ,o7), RC + = [0,c), X be a Banach space and u: R X X X

R --> X. Define

(at)x = u(r,x,t), (at): x - X.

X is the "state" space and interpret (a,t)x to be the state of the sys-

tem at time o + t if' initially the state at time a was x.

The mapping u is said to define a process on X if u has the-'

following properties:

(i)

(ii)

(iii)

u is continuous.

(a,0) = I, the identity mapping.

(a+s,t)(s,s) = (a,s+t), a E R and s,t E R .

Property (iii) corresponds to unigueness in the forward direction of time.

The (positive) motion cr'oro.bit through (cr,x) is -U (a,t)x.
t>o

A dynamical system is an autonomous process- (Gat) = (0,t) for

all a c R and all t e R+ . A motion is said -to be periodic of period

a> 0 if (at+a)x = (a,t)x for all t E R . A process is said to be

periodic of period uD > (, if (a+W),t) = (a,t) for all a F R and all

t ER .

For a periodic process the Poincare map T: X - X defined by

Tx = (a,t)x
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for some fixed c: defines a discrete dynamical systerm with a motion or

orbit through x given by r (x) = U T x. It follows easily that fixed
n=O

points of T correspond to periodic motions of -the periodic process of

period km. The limit set L(x) of a discrete motion through x is

L(x) = n Cl U Trix.
j=O n=j

A set M in X is said to be postively invariant. if TM C M, negatively

invariant if M C TM and invariant if M = TM. It is easy to see ihat

Lemna 1. if' r (x is precompact, then L(x) is nonempty, compact and,

invariant.

Remark. It turns out later to be useful to note that the above result holds

if x is replaced by an arbitrary compact set K.

In relation to applications one of the problems, as in the use of

this lemma, in developing a. general theory is to have results wThich depend

upon determining boundedness of motions. One cannot, in general, give

direct tests for compactness but can verify boundedness by use, for example,

of Liapunov functions (see [1] for references to how this difficulty was

overcome in developing a general stability theory).

5. The Principal Results to be Generalized

Let f R X R -+ R be continuous and define a system of ordinary

differential equations



(1) x = f(t,x)

Assume -that the solution P(t,aS), )p(cr,Y,4) = 5 for c e R and c C R

is unique, is defined for all t E R , and depends continuously on

(t ,a,). Then !l(apt) =- y(u+t,a,5) defines a process on Rn.

For a periodic system of ordinary differential equations (1)

(f(t,x) = f(t+w0,x) for some w > O, all t C R and all x e Rn) let T

be the corresponding Poincare map defined above.

Then (1) (or T) is said to be dissipative if there is a bounded

set B in Rn such that given x e R there is an integer n(x) with

the property that Trx e B for all n > n(x). (It is sufficient to

assumre only that Tn(x) e B.)

This concept of dissipativeness for n = 2 was first studied by

Levinson [4] in 1949 and more general results can be found in [5], [6],

and [7] The principal properties of dissipative systems, the objective

of our generalization, are:

I. There is a maximal (nonetmpty) compact set J invariant

under T.

II. J is globally asymptotically stable.

III. For some integer kI, Tk has a fixed point for each

k >ko .

Levinson in [4] proved for n = 2. I and III (with k0 = 1), and

Pliss in [5] has the three results for general systems of ordinary differ-

ential equations. As will be pointed out later, it is now known for
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ordinary differential equations, that k
0

=- 1 (there is al-a.ys a periodic

solution of period w).

4. Retarded Functional Differential Equations

With r > 0 given let C = C([-r,Oj,Rn) be the space of continuous

functions mapping [-r,O] into Rn with the topology of uniform convergence.

For any continuous x defined on '[a-r,o+A), A > 0 and any t c [au-A)

define xt in C by xt(G) = x(t-1.), 0 c [-r,O]. Let f: R X C ->R be

continuous. A function x = x(a,q) defined on and. continuous on

[a-.ru-IA) is said. to be a solution of the rei;'ard. ed fuILCiona]. differential

equation

(2) x(t) = f(-,xt)

on [a,c+A) with initial value q at a if x = p and x(t) sptisfies

(2) on [,omLA). Assurme that each solution x(a,'.) exists anld is unique

on [a,-), and x(a,p)t depends continuously orn (a,cp,t). Then u(a,,t) =

x+t (,cp) defines a process on C. Again assarme (2) is periodic of period

w and T is the Poincare map of C into itself defined by the periodic

process u. Then the dissipative property is as before (X = C).

H') There is a bounded set B in X with the property that

given x e X there is a positive integer n(x) such that Tnx e B for

all n > n(x).

With the further, not unatural assumption, onr f that f takes
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bounded sets of R X C into bounded sets of R n then the solutions of

(2) smooth initial data. In fact, expressed in terms of T, retarded func-

tional differential equations have the following smoothing property

(X= C):

Hf) There is an integer no such that given a bounded set

B in X there is a compact set B* in X such that Tnx c B for

n = 0,1,2,...,N(N > no) implies Tn(x) e B* for n = no,nO + 1,...N.

The integer nO is the length of time it takes to smooth the initial.

data. For the retarded functional differential equation (2) nO is the

smallest integer such that no0 > r and for the ordinary differential

equation (1) n0 = (since X = Rn is locally compact). With Hf) it

is sufficient to assume in H') only that Tn(x) e B for n(x) < n <

n(x) + no; that is, only long enough to smooth.

6. Functional Differential Equations of Neutral Type

For a more general definition of functional differential equations

of neutral type and basic theorems concerning solutions and their properties

see [8] and [9]. Here we consider a more special case.

Let C,f, and xt be as before. Consider, in addition, the con-

tinuous map D: R X C -> R' of the form

D(t,cp) = cp(O) + Bl(t)cp(-rl) + ... + B,(t)cp(-rk)

where 0 < rj < r and the Bj are uniformly continuous and bounded for



t c R. A function x = x(a,c) defined and continuous on [a-r,a+A),

A > O, is said to be a solution of the neutral functional differential

equation

(3) d D(trxt ) = f(txt )

on (a,a+A) with initial value cp at a if x = cp, D(t,xt) is con-

tinuously differentiable on (ar+A) and satisfies (3) on (a, a+A).

Assume for any (o,iP) c R X C that a solution of (3) exists on (a,),

is unique, and x(,cp)(t) is continuous in (a,y,t). The function

u(a,q,t) = x +t(a,T) defines a process on C.

In this generality one cannot expect solutions to be smoother

than the initial data and further restrictions need to be placed on D

(see [8]). More specifically, we shall assume that D is stable (see

[8]); suffice it to say here that it is shown in [8] that D is stable

if and only if the solutions of D(t,xt) = 0 are uniformly asymptotically

stable. If D(t,m) and f(t,cp) are c-periodic in t, D is stable, and

f maps bounded sets of R X C into bounded sets of R , then from re-

sults in [8] and [10] it is not difficult to see that the Poincare map T

for this class of neutral functional differential equations has the fol-

lowing smoothing properties (X = C):

H') To each bounded set B in X there corresponds a

compact set B* in X with the property that given g > 0 there is an

integer no(e;B) such that Tnx E B for n > 0 implies T x E B for
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n > no(,B), where B* is an g-neighborhood of B*.

H4 ) For any compact set K in X, y (K) = U Tn K bounded
n=O

implies y (K) is precornmpact.

The weaker smoothing here requires a stronger concept of dissipa-

tiveness:

Hi) There is a bounded set B in X such that for each x

in X there is a neighborhood 0
x

of x and an integer N(x) such

that T Oi C B for n > N(x).

7. Partial Differential Equations

Certain types of parabolic and hyperbolic partial differential

equations are known to define processes on appropriate Sobolev spaces.

In the hyperbolic case there is some smoothing of initial data but this

is not so for hyperbolic equations. However, when it is known the.t a

hyperbolic equation defines a process on two Sobolev spaces X and Y

with X C Y algebraically and topologically and with the injection map

completely continuous, then the smoothing affect is replaced by the fact

that a bounded orbit in X is compact in Y.

8. General Hypotheses

As indicated by the brief discussion of the situation for partial

differential equations one will, in general, want to consider a trans-

formation T of two spaces X and Y with X imbedded in Y as
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described above with the injection map assumed to be at least continuous.

It then turns out that there are four hypotheses needed to obtain the

generalizations of I, II, and III stated in Section 3. All of this re-

quires considerable explanation and is more than we can enter into here

(the reader is referred to [1]). The four hypotheses are of the follow-

ing type:

H1 ) A dissipative property

H2 ) A smoothing property

H ) A fixed point property

H4) A smoothing property.

When X = Y these hypotheses become

Hi) There is a bounded set

there is a neighborhood 0 of x and
x

TnO CB for n > N(x).

B C X such that

an integer N(x)

for any x E X,

such that

HI) To each bounded set B in X there corresponds a compact

set B* in X with the property that given g > 0 there is an integer

nO (9,B) such that T x E B for n > 0 implies T x e B* for n > nO(9,B)5

where B* is an g-neighborhood of B*.

Hf) There is an integer k0 such that for every closed

bounded convex set B C X and every integer k > k if TnB is bounded

for 0 < n < k and Tk B -B, then Tk has a fixed point in B.

H4) For any compact set B C X, r (B) bounded implies

r (B) precompact.
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The results corresponding to I and II are implied by H
1
), H2 ),

and H4), and the fixed point property III follows from H1), H2 ) and H3).

In the case of partial differential equations when the injection

map is completely continuous it can be shown that Hi) implies H1) - H4),

so that all that need be assumed is Hl). When there is smoothing, as in

the case of retarded or neutral functional, differential equations, then

Hi) implies Hi) - HI) and again only a dissipative assumption is required.

Let us examine at least the case of retarded functional differential

equations in some detail. Here we have the smoothing property H2)" and

need only assume the weaker form of dissipativeness Hl)". It can then be

shown that H1 )" and H1) imply HI ) - HI). In fact, one obtains

Theorem 1. If T satisfies H"') and H"), then there is a compact set K

in X with the property that given a compact set H in X there is an

open neighborhood H
0

of H and an integer N(H) such that Tn(H0 ) C K

for all n > N(H).

It can then be shown that J = n Tn K is the maximal compact in-
n=O

variant. This is done by showing first of all that J is well-defined

(does not depend on the choice of K from Theorem 1) and that J = L(K).

Being a limit set J is nonempty, compact and invariant (see the remark

below Lemma 1) and it is easy to see that J is the maximal compact in-

variant set and is a global attraction. Proving that J is stable is

more difficult. The fixed point property III follows readily from

Theorem 1 and Schauder's fixed point theorem.
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If one assumes, in addition to Hi) and Hi) that T maps bounded

sets in-to bounded sets, then it follows that It is compact for k > nO

and one can show using Browder's extension of the Schauder fixed point

theorem that e has a fixed point for each k > n
O

(in III, ko = no).

This result has also been given by Horn in [11] as a consequence of his

extension of Schauder's fixed point theorem that is slightly different

from Browder's. A similar result for retarded functional differential

equations which are uniformly bounded and uniformly ultimately bounded

was given by Yoshizawa in [12] (see also [13 ]). In addition, Yoshizawa

assumes that the f in (2) satisfies a Lipschitz condition.

Thus for ordinary differential equations we know for dissipative

ordinary differential equations there is always a periodic solution of

period X and for dissipative retarded functional differential equations

when the solution map maps bounded sets into bounded sets and X > r

there is a periodic solution of period w.

One suspects that there should be better results and from conver-

sations at this meeting with G. Stephen Jones and J. Hale, it seems clear

that a dissipative retarded functional differential equation always has a

periodic solution of period c without any further assumptions.

From subsequent conversations with J. Hale it seems that a similar

result is true for a restricted class of neutral functional differential

equations (it appears necessary, for example, to assume that the operator

D is autonomous).

9. Concluding Remarks

The rather abstract theory presented here shows how the theory of
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dissipative systems of ordinary differential equations can be extended to

include a wide class of functional and partial differential equations.

Since the basic hypotheses are all in terms of boundedness, finding suf-

ficient conditions in terms of Liapunov functions is not too difficult

and we are undertaking now to work out some nontrivial examples to illus-

trate how the theory can be applied.
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